Unform Properties
York, August 2009

David A. Ross
Department of Mathematics
University of Hawai‘i
1 Motivation

Theorem 1.1. (G. Keller, 1972) Let \(V \) be a variety of groups. Then \(V \) is uniformly amenable iff every group in \(V \) is amenable.

- What does uniformly amenable mean?
- What properties of variety is used here? Does it hold for other classes of groups?
- Are there similar results for mathematical properties other than amenability, or objects other than groups? What is really going on here?
2 Uniform properties: not-groups

2.1 Continuous functions

Everyone knows the following:

Proposition 2.1. Let \(f : \mathbb{R} \to \mathbb{R} \). TFAE:

1. \(f \) is uniformly continuous

2. \(f \) is (uniformly) S-continuous:

 \[\forall x, y \in \star \mathbb{R} \ x \approx y \Rightarrow f(x) \approx f(y) \]

3. \(f \) is (pointwise) S-continuous:

 \[\forall x \in \star \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \star \mathbb{R} \ |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon \]
Similarly:

Proposition 2.2. Let F be a set of real functions. TFAE:

1. F is uniformly equicontinuous, that is, for every $\epsilon > 0$ there is a $\delta > 0$ such that for every f in F and $x, y \in \mathbb{R}$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$

2. Every $f \in F$ is pointwise S-continuous

Remarks 2.1. These results have the following form:

- For a mathematical object O: If O has property P then O is uniformly P.

- For a set S of such objects: If every $s \in S$ has property P then S is uniformly P.
2.2 Statistical experiments

Recall that a statistical experiment is a parametrized family $\mathcal{E} = (X, \mathcal{A}, P_\theta)_{\theta \in \Theta}$ of probability measures on a measurable space.

The experiment \mathcal{E} is homogeneous provided $\forall \theta, \theta' \in \Theta, P_\theta \ll P_{\theta'}$.

Let $\hat{\mathcal{E}} = (\hat{X}, \mathcal{A}_L, (P_\theta)_L)_{\theta \in \Theta}$ (Note: not the “nonstandard hull of an experiment”).

Proposition 2.3. If $\hat{\mathcal{E}}$ is homogeneous then so is \mathcal{E}.

The converse need not hold; for example, if P_θ is a normal distribution on \mathbb{R} with mean 0 and variance θ for $\theta > 0$, then \mathcal{E} is homogeneous but $\hat{\mathcal{E}}$ is not: $(P_\theta)_L(\text{monad}(0)) = 0$ or 1 depending as $\theta \approx 0$ or $\theta \not\approx 0$.
We could simply define “uniform homogeneity” for statistical experiments by

\(\mathcal{E} \) is uniformly homogeneous provided \(\hat{\mathcal{E}} \) is homogeneous

but there is an equivalent standard definition:

Proposition 2.4. Let \(\mathcal{E} \) be a statistical experiment. TFAE:

1. \(\hat{\mathcal{E}} \) is homogeneous

2. \(\forall \epsilon > 0 \exists \delta > 0 \forall \theta, \theta' \in \Theta \forall E \in \mathcal{A} \ P_{\theta}(E) < \delta \Rightarrow P_{\theta'}(E) < \epsilon \)
3 Uniform properties: groups

3.1 Amenability

A group G is amenable if there is a left-invariant, finitely-additive probability measure μ on $(G, \mathcal{P}(G))$ with $P(G) = 1$. (Call such a μ a mean.)

Example 3.1. \mathbb{Z} is amenable under addition.

Proof. Let $H \in^{*} \mathbb{N}$ be infinite, and put $I = [-H, H]$. For $A \subseteq \mathbb{Z}$ let $P(A) = q\left(\frac{1}{2H+1} \cap^{*} A\right)$. P is a finitely-additive measure on $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$, and if $0 \neq a \in \mathbb{Z}$ then the difference between $|I \cap^{*} A|$ and $|I \cap^{*}(a + A)|$ is $\leq 2a$; it follows that $P(A) - P(a + A) = 0$. \hfill \Box

Example 3.2. Let F_{2} be the free group on two generators, i.e., all formal words on the letters $\{a, b, a^{-1}, b^{-1}\}$ with the only simplification rules being the obvious ones. Then F_{2} is not amenable.

Example 3.3. Finite groups are amenable; abelian groups are amenable; homomorphic images and subgroups of amenable groups are amenable;...
Theorem 3.1. Let \((G,e)\) be a multiplicative group. Denote by \(L^\infty(G)\) the bounded real functions on \(G\). The following are equivalent: (a) \(G\) is amenable; (b) there is a positive linear functional \(T : L^\infty(G) \to \mathbb{R}\) which is \(G\)-invariant in the sense that for any \(g \in G\) and \(f \in L^\infty(G)\), \(T(f) = T(f \circ \phi_g)\), where \(\phi_g\) is the function \(a \mapsto ga\) from \(G\) to \(G\).

Proof. \((b \Rightarrow a)\) is trivial.

\((a \Rightarrow b)\) Via Loeb measures: Given \(\mu\), define a functional by \(T(f) = \int_G f \, d\mu\). It is easy to confirm that \(T\) works. \(\square\)

Other interesting equivalences:

Theorem 3.2. (Følner): \(G\) is amenable if and only if:

\[
\forall A \subseteq G \text{ finite } \forall r < 1 \exists E \subseteq G \text{ finite } \forall a \in A \quad \frac{|E \cap aE|}{|E|} > r
\]

(Henson has given a nice nonstandard proof of \(\Leftarrow\).)

Theorem 3.3. (Kesten): \(G\) is amenable if and only if: For any finite symmetric subset \(A\) of \(G\), \(\frac{2^{\sqrt{n}}B_{2n}}{n} \to |A|\) as \(n \to \infty\), where \(B_k\) is the number of formal words of length \(k\) from \(A\) which reduce to the identity.
A useful fact with a nice nonstandard proof:

Theorem 3.4. Let G be a group. TFAE:

1. G is amenable
2. Every subgroup of G is amenable
3. Every finitely-generated subgroup of G is amenable

Proof. $(2 \Rightarrow 3)$ is trivial. $(3 \Rightarrow 1)$ Let S be a hyperfinite subset of G which contains G, let S' and let \hat{G} be the internal \ast--group generated by S. By transfer \hat{G} is \ast--amenable; let μ be a \ast--mean. For $A \subseteq G$ let $\nu(A) = \Diamond \mu(A)$. It is easy to verify that μ is a mean on G.

$(1 \Rightarrow 2)$ Standard and tedious, involving coset representations. \(\square\)
If G is a group, then $\ast G$ is not only a *group, but also a group. Does amenability of one imply amenability of the other?

Theorem 3.5. If $\ast G$ is amenable then so is G. In fact, if there is an amenable subgroup G' of $\ast G$ with $G \subseteq G'$ then G is amenable.

Proof. Let μ be an mean on G'. Define ν on $(G, \mathcal{P}(G))$ by $\nu(A) = \mu(G' \cap \ast A)$, it is easy to verify that ν is a mean. \square

The converse does not hold:

Example 3.4. Let $G = \{\pi \in \text{Permutations}(\mathbb{N}) : \exists N \in \mathbb{N} \ \forall x > N \ \pi(x) = x\}$. Then G is amenable, but $\ast G$ is not.

Amenability of G: every finitely-generated subgroup of G is finite, so amenable, and by the above G is amenable. Nonamenability of $\ast G$: find a copy F_2 in the set of permutations of $\{0, 1, \ldots, H-1\}$ for some infinite $H-1$.
A group G is uniformly $F\Delta$lner, or uniformly amenable (UA) if $|E|$ can be chosen to depend only on $|A|$ and r, that is, if there is a function $F : \mathbb{N} \times (0,1) \to \mathbb{N}$ such that

$$\forall n \in \mathbb{N} \ \forall A \subseteq G \text{ s.t. } |A| < n \ \forall r < 1$$

$$\exists E \subseteq G \text{ s.t. } |E| < F(n,r) \ & \ \forall a \in A \frac{|E \cap aE|}{|E|} > r$$

A class \mathcal{D} of groups is uniformly amenable if there is a single function $F : \mathbb{N} \times (0,1) \to \mathbb{N}$ that witnesses UA for all the groups in \mathcal{D}.

Theorem 3.6. Let G be a group; then *G is amenable iff G is uniformly amenable. More generally, let \mathcal{G} be a set of groups; then every $G \in ^*\mathcal{G}$ is amenable iff \mathcal{G} is uniformly amenable.

Proof of (\Leftarrow): Fix $n \in \mathbb{N}, r < 1$. We need to define $F(n,r)$. Let $m \in ^*\mathbb{N} \setminus \mathbb{N}$. By amenability of $^*\mathcal{G}$ and the $F\Delta$lner condition, m witnesses

$$\exists m \in ^*\mathbb{N} \ \forall G \in ^*\mathcal{G} \ \forall A \in ^*\mathcal{P}(G) |A| < n \Rightarrow \exists E \in ^*\mathcal{P}(G), \ |E| \text{ finite } \& \ \forall a \in A \frac{|E \cap aE|}{|E|} > r$$

as above. By transfer, there is a standard finite m that works for this n and r; put $F(n,r) := m$.
3.2 Generation of groups

$H \subseteq G$ generates a group G if G is the smallest subgroup of G which contains H.

If $e \in H = H^{-1}$, then H generates G provided $G = \bigcup_n H^n$

Proposition 3.1. for a group G and subset H the following are equivalent:

1. H generates G

2. $G = \bigcup_{n<N}(H \cup H^{-1})^n$ for some finite N

More generally, if \mathcal{D} is a set of pairs of groups and subsets, then every group in $^*\mathcal{D}$ is generated by the corresponding subset if and only if for some N and every $(G,H) \in \mathcal{D}$, $G = \bigcup_{n<N}(H \cup H^{-1})^n$.
4 Quasivarieties

Call a class \mathcal{C} of mathematical objects a quasivariety provided whenever $\mathcal{D} \subseteq \mathcal{C}$ is a set then $\star \mathcal{D} \subseteq \mathcal{C}$.

Example 4.1. A variety of groups (i.e., class of all groups satisfying a finite set of identity relations) is a quasivariety. More generally, the class of all groups satisfying an arbitrary set of identity relations is a quasivariety.

Example 4.2. For any fixed $\epsilon > 0$, pairs (G, H), where G is a group, H is a subset that generates it, and there exists a left-invariant finitely-additive probability measure μ on (G, \mathcal{A}) where $H \in \mathcal{A}$ and $\mu(H) > \epsilon$. (Denote this set of pairs by \mathcal{D}_ϵ)
Theorem 4.1. Let \(\mathcal{C} \) be a class of mathematical objects, \(P \) be a property of form \(P(\mathcal{O}) \Leftrightarrow \forall i \in I \exists j \in J \phi_{i,j}(\mathcal{O}) \) where \(J \) is a directed set, and suppose that \(\mathcal{V} \subseteq \mathcal{C} \) is a quasivariety such that every \(\mathcal{O} \) in \(\mathcal{V} \) satisfies \(P \). Then \(\mathcal{V} \) is “uniformly \(P \)” in the sense that

\[
\forall i \in I \ \exists j \in J \ \forall \mathcal{O} \in \mathcal{V} \ \phi_{i,j}(\mathcal{O})
\]

Corollary 4.1. If every group in a variety \(\mathcal{V} \) is amenable, then \(\mathcal{V} \) is uniformly amenable.

Corollary 4.2. Fix \(\epsilon > 0 \). Then for some \(N \) and every \((G, H) \in D_{\epsilon} \), \(G = \bigcup_{n<N}(H \cup H^{-1})^n \)

(Proof requires an argument that for \((G, H) \in D_{\epsilon} \), \(H \) generates \(G \). One such argument is due to vDD.)
Proof of Theorem:

First, note that the usual proof shows that a set D is uniformly P iff every element of D is P.

Now, if the theorem fails,

$$\exists i \in I \ \forall j \in J \ \exists O_j \text{ such that } \neg \phi_{i,j}(O_j)$$

Fix i, let $D = \{O_j\}_{j \in J}$.

Evidently D is not uniformly P, so not all elements of D are P.

This contradicts the assumption that \mathcal{V} is a quasivariety with every element satisfying P.