‘BISIMPLE INVERSE \(\omega\)-SEMIGROUPS OF LEFT I-QUOTIENTS’

Nassraddin Ghroda
BISIMPLE INVERSE ω-SEMIGROUPS OF LEFT I-QUOTIENTS

N. GHRODA

Abstract. A subsemigroup S of an inverse semigroup Q is a left I-order in Q if every element in Q can be written as $a^{-1}b$ where $a, b \in S$ and a^{-1} is the inverse of a in the sense of inverse semigroup theory. If we insist on a and b being R-related in Q, then we say that S is a straight left I-order in Q. We give necessary and sufficient conditions for a semigroup to be a left I-order in a bisimple inverse ω-semigroup.

1. Introduction

Many definitions of semigroups of quotients have been proposed and studied. The first, that was specifically tailored to the structure of semigroups was introduced by Fountain and Petrich in [2], but was restricted to completely 0-simple semigroups of left quotients. This definition has been extended to the class of all semigroups [6]. The idea is that a subsemigroup S of a semigroup Q is a left order in Q or Q is a semigroup of left quotients of S if every element of Q can be written as a^2b where $a, b \in S$ and a^2 is the inverse of a in a subgroup of Q and if, in addition, every square-cancellable element (an element a of a semigroup S is square-cancellable if $aH\ast a^2$) lies in a subgroup of Q. Semigroups of right quotients and right orders are defined dually. If S is both a left order and a right order in a semigroup Q, then S is an order in Q and Q is a semigroup of quotients of S. This definition and its dual were used in [6] to characterize semigroups which have bisimple inverse ω-semigroups of left quotients.

On the other hand, Clifford [1] showed that from any right cancellative monoid S with (LC) there is a bisimple inverse monoid Q such that $Q = S^{-1}S$; that is, every element q in Q can be written as $a^{-1}b$ where $a, b \in S$ and a^{-1} is the inverse of a in Q in the sense of inverse semigroup theory. By saying that a semigroup S has the (LC) condition we mean that for any $a, b \in S$ there is an element $c \in S$ such that $Sa \cap Sb = Sc$. The author and Gould in [4] have extended Clifford’s work to a left ample semigroup with (LC) where they introduced the following definition of left I-orders in inverse semigroups:

Date: August 20, 2010.

Key words and phrases. bisimple inverse ω-semigroup , I-quotients, I-order.
Let Q be an inverse semigroup. A subsemigroup S of Q is a \textit{left I-order} in Q or Q is a semigroup of \textit{left I-quotients} of S, if every element in Q can be written as $a^{-1}b$ where $a, b \in S$. The notions of \textit{right I-order} and \textit{semigroup of right I-quotients} are defined dually. If S is both a left I-order and a right I-order in Q, we say that S is an \textit{I-order} in Q and Q is a semigroup of \textit{I-quotients} of S. It is clear that, if S a left order in an inverse semigroup Q, then it is certainly a left I-order in Q; however, the converse is not true (see for example [4] Example 2.2).

A left I-order S in an inverse semigroup Q is \textit{straight left I-order} if every element in Q can be written as $a^{-1}b$ where $a, b \in S$ and $a R b$ in Q; we also say that Q is a \textit{semigroup of straight left I-quotients} of S. If S is straight in Q, we have the advantage of controlling products in Q. Many left I-orders are straight, such as left I-orders in primitive inverse semigroups. In the case where S is a straight left I-order in Q, the uniqueness problem has been solved [4], that is, the author and Gould have given necessary and sufficient conditions for a left I-order to have a unique semigroup of a left I-quotients.

In [5] it was shown that if H is a congruence on a regular semigroup Q, then every left order S in Q is straight. To prove this, Gould uses the fact that S intersects every H-class of Q. Since H is congruence on any bisimple inverse ω-semigroup, any left order S in such a semigroup must be straight. In the case of left I-orders we show that if S is a left I-order in a bisimple inverse ω-semigroup Q, then S intersects every L-class of Q and we use this to show that S is straight in Q.

The main aim of this article is to study semigroups which have bisimple inverse ω-semigroups of left I-quotients. After giving some preliminaries in Section [2] in Section [3] we extend the result in [6], by introducing the main theorem in this article, which gives necessary and sufficient conditions for a semigroup to be a left I-order in a bisimple inverse ω-semigroup.
2. Preliminaries

Throughout this article we shall follow the terminology and notation of [1]. The set of all non-negative integers will be denoted by \(\mathbb{N}^0 \). Let \(\mathcal{R}, \mathcal{L}, \mathcal{H} \) and \(\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R} \) be the usual Green’s relations. A semigroup \(S \) is bisimple if it consists of a single \(\mathcal{D} \)-class.

For any semigroup \(Q \) with the set of idempotents \(E \) we define a partial ordering \(\leq \) on \(E \) by the rule that \(e \leq f \) if and only if \(ef = fe = e \). A bisimple inverse \(\omega \)-semigroup is a bisimple inverse semigroup whose idempotents form an \(\omega \)-chain; that is, \(E(S) = \{ e_m : m \in \mathbb{N}^0 \} \) where \(e_0 \geq e_1 \geq e_2 \geq \ldots \). Thus if \(S \) is a bisimple inverse \(\omega \)-semigroup, on \(E \) we have \(e_m \leq e_n \) if and only if \(m \geq n \).

Reilly [8] determined the structure of all bisimple inverse \(\omega \)-semigroups as follows:

Let \(G \) be a group and let \(\theta \) be an endomorphism of \(G \). Let \(S(G, \theta) \) be the semigroup on \(\mathbb{N}^0 \times G \times \mathbb{N}^0 \) with multiplication

\[
(m, g, n)(p, h, q) = (m - n + t, (g\theta^{t-n})(h\theta^{t-p}), q - p + t)
\]

where \(t = \max\{n, p\} \) and \(\theta^0 \) is interpreted as the identity map of \(G \). As was shown in [8] (Cf [7]), \(S(G, \theta) \) is a bisimple inverse \(\omega \)-semigroup and every bisimple inverse \(\omega \)-semigroup is isomorphic to \(S(G, \theta) \). In the case where \(G \) is trivial, then \(S(G, \theta) = B \) where \(B \) the bicyclic semigroup, we identify \(B \) with \(\mathbb{N}^0 \times \mathbb{N}^0 \). The set of idempotents of \(S(G, \theta) \) is \(\{ (m, 1, m) : m \in \mathbb{N}^0 \} \) and for any \((m, g, n) \) in \(S(G, \theta) \),

\[
(m, g, n)^{-1} = (n, g^{-1}, m).
\]

For any \((m, a, n), (p, b, q) \in S(G, \theta) \),

\[
(m, a, n) \mathcal{R} (p, b, q) \text{ if and only if } m = p,
\]

\[
(m, a, n) \mathcal{L} (p, b, q) \text{ if and only if } n = q,
\]

and, consequently,

\[
(m, a, n) \mathcal{H} (p, b, q) \text{ if and only if } m = p \text{ and } n = q.
\]

If \(Q \) is a bisimple inverse \(\omega \)-semigroup, let \(R_n \) (\(L_n \)) denote the \(\mathcal{R} \)-class (\(\mathcal{L} \)-class) of \(Q \) containing the idempotent \(e_n = (n, 1, n) \). From the above,

\[
R_m = \{(m, a, n) : a \in G, n \in \mathbb{N}^0 \},
\]

\[
L_n = \{(m, a, n) : a \in G, m \in \mathbb{N}^0 \}.
\]

Clearly,

\[
H_{m,n} = R_m \cap L_n = \{(m, a, n) : a \in G \}
\]

\[
= \{ q \in Q : qq^{-1} = e_m, q^{-1}q = e_n \}.
\]
and from the multiplication in $S(G, \theta)$,
\[H_{m,n}H_{p,q} \subseteq H_{m-n+t,q-p+t}, \]
where $t = \max\{n, p\}$.

Let S be any semigroup such that there is a homomorphism $\varphi : S \rightarrow B$. We define functions $l, r : S \rightarrow \mathbb{N}^0$ by $a\varphi = (r(a), l(a))$. We also put $H_{i,j} = (i, j)\varphi^{-1}$, so that S is a disjoint union of subsets of the $H_{i,j}$ and
\[H_{i,j} = \{a \in S : r(a) = i, l(a) = j\}. \]

From the above, \mathcal{H} is a congruence on any bisimple inverse ω-semigroup Q. Moreover there is a homomorphism $\varphi : Q \rightarrow B$ given by $(m, p, n)\varphi = (m, n)$ which is surjective with $\text{Ker}\varphi = \mathcal{H}$ so $Q/\mathcal{H} \cong B$ where B is the bicyclic semigroup. As above we will index \mathcal{H} in Q by putting $H_{i,j} = (i, j)\varphi^{-1}$.

Let S be a left I-order in Q. Let $\varphi = \varphi|_S$, then φ is a homomorphism from S to B. Unfortunately, this homomorphism is not surjective in general, since S need not intersect every \mathcal{H}-class of Q. But we can as above index the elements of S.

In [3] it was shown that, if a semigroup S is a left I-order in a bicyclic semigroup B, then S intersects every L-class of B. Moreover, it is straight. In fact, this is true for any left I-order in a bisimple inverse ω-semigroup, as we will see in the next lemmas.

Lemma 2.1. If a semigroup S is a left I-order in a bisimple inverse ω-semigroup Q, then $S \cap L_n \neq \emptyset$ for all $n \in \mathbb{N}^0$.

Proof. Let $p \in H_{n,n}$, then $p = a^{-1}b$ for some $a, b \in S$ with $a \in H_{i,j}$ and $b \in H_{k,l}$. Hence
\[p = a^{-1}b \in H_{i,j}H_{k,l} \subseteq H_{j-i+\max(i,k),l-k+\max(i,k)}, \]
and so $n = j - i + \max(i, k) = l - k + \max(i, k)$. So, as $\max(i, k) = i$ or k, either $n = j$ or $n = l$. Hence $S \cap L_n \neq \emptyset$. \qed

In [6] it was shown that if S a left order in a bisimple inverse ω-semigroup Q, then it is straight. The following lemma extends this to the left I-order in a bisimple inverse ω-semigroup.

Lemma 2.2. If a semigroup S is a left I-order in a bisimple inverse ω-semigroup Q, then S is straight.

Proof. Let $(h, q, k) \in Q$, then $(h, q, k) = (i, a, j)^{-1}(t, b, s) = (j, a^{-1}, i)(t, b, s)$ for some $(i, a, j), (t, b, s) \in S$. Let $n = \max\{i, t\}$; since $S \cap L_n \neq \emptyset$, by Lemma 2.1.
there exist \((u,c,n) \in S \cap L_n\) and hence \((u,c,n)^{-1}(u,c,n) = (n,1,n)\), so that \((n,1,n)R(t,b,s)\) or \((n,1,n)R(i,a,j)\). In both cases, we have
\[
(h,q,k) = (i,a,j)^{-1}(n,1,n)(t,b,s) = (i,a,j)^{-1}(u,c,n)^{-1}(u,c,n)(t,b,s) = ((u,c,n)(i,a,j))^{-1}((u,c,n)(t,b,s)).
\]
It is clear that \((u,c,n)(i,a,j)R(u,c,n)(t,b,s)\). Hence \(S\) is straight. \(\square\)

Proposition 2.3. Let \(Q\) be an inverse semigroup and \(q = a^{-1}b\) with \(aRb\), then \(a^{-1}RqLb\).

The following corollaries are clear.

Corollary 2.4. Let \(Q\) be an inverse semigroup. If \(a^{-1}b,c^{-1}d \in Q\) where \(aRb\) and \(cRd\), then
(i) \(a^{-1}bRc^{-1}d \iff a^{-1}a = c^{-1}c\);
(ii) \(a^{-1}bLc^{-1}d \iff b^{-1}b = d^{-1}d\).

Corollary 2.5. Let \(Q\) be a bisimple inverse \(\omega\)-semigroup, then
(i) \((m,a,n)^{-1}(m,b,t)R(i,c,j)^{-1}(i,d,k)\) if and only if \(n = j\);
(ii) \((m,a,n)^{-1}(m,b,t)L(i,c,j)^{-1}(i,d,k)\) if and only if \(t = k\).

3. The main theorem

This section is entirely devoted to proving Theorem 3.1 which gives a characterisation of semigroups which have a bisimple inverse \(\omega\)-semigroup of left I-quotients.

Theorem 3.1. A semigroup \(S\) is a left I-order in a bisimple inverse \(\omega\)-semigroup \(Q\) if and only if \(S\) satisfies the following conditions:
(A) There is a homomorphism \(\varphi : S \to B\) such that \(S\varphi\) is a left I-order in \(B\);
(B) For \(x,y,a \in S\),
\[
(i) \ l(x),l(y) \geq r(a) \text{ and } xa = ya \text{ implies } x = y,
(ii) \ r(x),r(y) \geq l(a) \text{ and } ax = ay \text{ implies } x = y.
\]
(C) For any \(b,c \in S\), there exist \(x,y \in S\) such that \(xb = yc\) where
\[
x \in H_{r(x),r(b)-l(b)+\max\{l(b),l(c)\}}, y \in H_{r(y),r(c)-l(c)+\max\{l(b),l(c)\}}.
\]

Proof. Let \(S\) be a left I-order in a bisimple inverse \(\omega\)-semigroup \(Q\). For condition (A), since \(S\) is a left I-order in \(Q\) and there is a homomorphism \(\overline{\varphi} : Q \to B\) given by
\[
(m,p,n)\overline{\varphi} = (m,n),
\]
we can restrict \(\varphi \) on \(S \) to get a homomorphism \(\varphi \) from \(S \) to \(B \). Let \((i, j) \in B\), then there is an element \(q \) in \(Q \) such that \(q \in H_{i,j} \) for some \(i, j \in \mathbb{N}^0 \). Put \(q = a^{-1}b \) for some \(a, b \in S \) with \(a \# b \) in \(Q \), so that \(r(a) = r(b) \). Hence

\[
q \in H_{l(a),r(a)} H_{r(a),l(b)} \subseteq H_{l(a),l(b)},
\]
then

\[
(i, j) = (l(a), l(b)) = (r(a), l(a))^{-1}(r(b), l(b)) = (a \varphi)^{-1}(b \varphi).
\]

To see that \((B)(i)\) holds, suppose that \(x, y, a \in S \) where \(l(x), l(y) \geq r(a) \) and \(xa = ya \). Since \(a^{-1} \in H_{l(a),r(a)} \) and \(xaa^{-1} = yaa^{-1} \), that is, \(xe_{r(a)} = ye_{r(a)} \), and \(r(a) \leq l(x), l(y) \), then we have \(e_{l(x)} e_{l(y)} \leq e_{r(a)} \). Hence \(x e_{l(x)} e_{r(a)} = y e_{l(y)} e_{r(a)} \) and so \(x = x e_{l(x)} = y e_{l(y)} = y \).

\((B)(ii)\) Similar to \((B)(i)\).

Finally, we consider \((C)\). Let \(b, c \in S \), then \(bc^{-1} \in Q \) and

\[
bc^{-1} \in H_{r(b),l(b)} H_{l(c),r(c)} \subseteq H_{r(b) - l(b) + \max(l(b), l(c)), r(c) - l(c) + \max(l(b), l(c))}.
\]

Since \(S \) is a straight left I-order in \(Q \), then \(bc^{-1} = x^{-1}y \) where \(x \# y \) for some \(x, y \in S \), and by Lemma 2.6 in [4], \(xb = yc \). From \(bc^{-1} = x^{-1}y \) we have

\[
H_{r(b) - l(b) + \max(l(b), l(c)), r(c) - l(c) + \max(l(b), l(c))} = H_{l(x), l(y)},
\]
so that \(l(x) = r(b) - l(b) + \max(l(b), l(c)) \) and \(l(y) = r(c) - l(c) + \max(l(b), l(c)) \).

Conversely, we suppose that \(S \) satisfies conditions \((A)\), \((B)\) and \((C)\). Now, our aim is to construct via equivalence classes of order pairs of elements of \(S \) an inverse semigroup \(Q \), which is a semigroup of straight left I-quotients of \(S \). First, we let

\[
\Sigma = \{(a, b) \in S \times S : r(a) = r(b)\}
\]
and on \(\Sigma \) we define the relation \(\sim \) as follows:

\((a, b) \sim (c, d) \iff \) there are elements \(x, y \) in \(S \) such that \(xa = yc \) and \(xb = yd \)

where \(l(x) = r(a), l(y) = r(c) \) and \(r(x) = r(y) \). Notice that if \((a, b) \sim (c, d) \), then \(l(a) = l(c) \) and \(l(b) = l(d) \).

Lemma 3.2. *The relation \(\sim \) is an equivalence.*

Proof. It is clear that \(\sim \) is symmetric. Let \((a, b) \in \Sigma\), by \((C)\) for any \(a \in S \) there exist \(x \in S \) with \(l(x) = r(a) \), so that \(\sim \) is reflexive.
Suppose that \((a, b) \sim (c, d) \sim (p, q)\). Then there are elements \(x, y, \bar{x}, \bar{y}\) in \(S\) with
\[
xa = yc \text{ and } xb = yd,
\]
\[
\bar{xc} = \bar{yp} \text{ and } \bar{xd} = \bar{yq},
\]
where
\[
r(x) = r(y), l(x) = r(a), l(y) = r(c),
\]
and
\[
r(\bar{x}) = r(\bar{y}), l(\bar{x}) = r(c), l(\bar{y}) = r(p).
\]
By Condition \((C)\), for \(y, \bar{x}\) there exist \(s, t \in S\) such that \(s \bar{x} = ty\) where
\[
s \in H_{r(s), r(\bar{x}) - l(\bar{x})} \max \{l(\bar{x}), l(y)\}, t \in H_{r(s), r(y) - l(y)} \max \{l(\bar{x}), l(y)\}.
\]
Since \(l(\bar{x}) = r(c) = l(y)\), then \(l(s) = r(\bar{x})\) and \(l(t) = r(y) = r(x)\). Now,
\[
txa = tyc = s\bar{xc} = s\bar{yp},
\]
and
\[
txb = tyd = s\bar{xd} = s\bar{yq}.
\]
Hence \(txa = s\bar{yp}\) and \(txb = s\bar{yq}\) where \(tx \in H_{r(s), r(a)}\), \(s\bar{y} \in H_{r(s), r(p)}\). We have
\[
l(tx) = r(a), l(s\bar{y}) = r(p) \text{ and } r(tx) = r(s\bar{y}),
\]
that is, \((a, b) \sim (p, q)\). Thus \(\sim\) is transitive. \(\square\)

We write the \(\sim\)-equivalence class of \((a, b)\) as \([a, b]\) and denote by \(Q\) the set of all \(\sim\)-equivalence classes of \(\Sigma\). If \([a, b], [c, d] \in Q\), then by \((C)\) for \(b\) and \(c\) there exist \(x, y\) such that \(xb = yc\) where
\[
x \in H_{r(x), r(a) - l(b)} \max \{l(b), l(c)\}, y \in H_{r(x), r(c) - l(c)} \max \{l(b), l(c)\}
\]
and it is easy to see that
\[
r(xa) = r(xb) = r(yc) = r(yd) = r(x) = r(y)
\]
and we deduce that \([xa, yd] \in Q\). Define a multiplication on \(Q\) by
\[
[a, b][c, d] = [xa, yd] \text{ where } xb = yc
\]
and \(x \in H_{r(x), r(b) - l(b)} \max \{l(b), l(c)\}, y \in H_{r(x), r(c) - l(c)} \max \{l(b), l(c)\} .
\]

Lemma 3.3. The given multiplication is well defined.

Proof. Suppose that \([a_1, b_1] = [a_2, b_2]\) and \([c_1, d_1] = [c_2, d_2]\). Then there are elements \(x_1, x_2, y_1, y_2\) in \(S\) such that
\[
x_1a_1 = x_2a_2, \\
x_1b_1 = x_2b_2, \\
y_1c_1 = y_2c_2, \\
y_1d_1 = y_2d_2,
\]
where
\[l(x_1) = r(a_1), \quad l(x_2) = r(a_2), \quad r(x_1) = r(x_2) \]
and
\[l(y_1) = r(c_1), \quad l(y_2) = r(c_2), \quad r(y_1) = r(y_2). \]
Note that, consequently,
\[l(a_1) = l(a_2), l(b_1) = l(b_2), l(c_1) = l(c_2) \text{ and } l(d_1) = l(d_2). \]
Then
\[[a_1, b_1][c_1, d_1] = [xa_1, yd_1] \text{ where } xb_1 = yc_1 \]
and \[x \in H_{r(x), r(b_1) - l(b_1) + \max(l(b_1), l(c_1))} \times \in H_{r(x), r(c_1) - l(c_1) + \max(l(b_1), l(c_1))} \]
Also,
\[[a_2, b_2][c_2, d_2] = [\bar{x}a_2, \bar{y}d_2] \text{ where } \bar{x}b_2 = \bar{y}c_2 \]
and \[\bar{x} \in H_{r(\bar{x}), r(b_2) - l(b_2) + \max(l(b_2), l(c_2))} \times \in H_{r(\bar{x}), r(c_2) - l(c_2) + \max(l(b_2), l(c_2))} \].
We have to show that \([xa_1, yd_1] = [\bar{x}a_2, \bar{y}d_2].\]

Before completing the proof of Lemma 3.3 we present the following lemma.

Lemma 3.4. Let \(a_1, a_2, b_1, b_2 \in S\) be such that
\[r(a_1) = r(b_1), r(a_2) = r(b_2) \]
and suppose that \(x_1, x_2, w_1, w_2 \in S\) are such that
\[x_1a_1 = x_2a_2, \quad x_1b_1 = x_2b_2, \quad w_1a_1 = w_2a_2 \]
where \(r(x_1) = r(x_2), l(x_1) = r(a_1), l(x_2) = r(a_2)\) and \(r(w_1) = r(w_2).\) Then \(w_1b_1 = w_2b_2.\)

Proof. Let \(a_1, a_2, b_1, b_2, x_1, x_2, w_1, w_2\) exist as given. Note that consequently \(l(a_1) = l(a_2)\) and \(l(b_1) = l(b_2).\) By (C) for \(w_1, x_1\) there exist \(x, y \in S\) such that \(xw_1 = yx_1\) where
\[x \in H_{r(x), r(w_1) - l(w_1) + \max(l(w_1), l(x_1))}, \quad y \in H_{r(x), r(x_1) - l(x_1) + \max(l(w_1), l(x_1))}. \]
Then \(xw_1a_1 = yx_1a_1,\) and
\[xw_2a_2 = xw_2a_1 = yx_1a_1 = yx_2a_2. \]
Now,
\[xw_2 \in H_{r(x), l(w_2) - l(w_1) + \max(l(w_1), l(x_1))}, \quad yx_2 \in H_{r(x), l(x_2) - l(x_1) + \max(l(w_1), l(x_1))} \]
and as \(l(x_1) = r(a_1)\) and \(l(x_2) = r(a_2),\) we have
\[l(yx_2) = r(a_2) - r(a_1) + \max(l(w_1), r(a_1)) \geq r(a_2) \]
and
\[l(xw_2) = l(w_2) - l(w_1) + \max(l(w_1), r(a_1)). \]
As \(wx_2a_2 = yx_2a_2 \), then in order to use Condition \((B)(i)\), we have to show that \(l(xw_2) \geq r(a_2) \). Since \(w_1a_1 = w_2a_2 \),
\[
 r(w_1) - l(w_1) + \max(l(w_1), r(a_1)) = r(w_1) - l(w_2) + \max(l(w_2), r(a_2)) \tag{3.1}
\]
so that
\[
l(w_2) - l(w_1) + \max(l(w_1), r(a_1)) = \max(l(w_2), r(a_2)) \geq r(a_2)
\]
as desired. Therefore by condition \((B)(i)\), \(xw_2 = yx_2 \). Since \(xw_1 = yx_1 \) and \(x_1b_1 = x_2b_2 \) we have
\[
xw_1b_1 = yx_1b_1 = yx_2b_2 = xw_2b_2.
\]
Once we show that \(r(w_1b_1), r(w_2b_2) \geq l(x) \), by \((B)(ii)\) we have \(w_1b_1 = w_2b_2 \). Now,
\[
w_1b_1 \in H_{r(w_1) - l(w_1) + \max(l(w_1), r(b_1))} \cdot l(b_1) - r(b_1) + \max(l(w_1), r(b_1))
\]
and
\[
w_2b_2 \in H_{r(w_1) - l(w_2) + \max(l(w_2), r(b_2))} \cdot l(b_2) - r(b_2) + \max(l(w_2), r(b_2))
\]
so that
\[
r(w_1b_1) = r(w_1) - l(w_1) + \max(l(w_1), r(a_1)) \quad \text{as} \quad l(x_1) = r(a_1) = r(b_1)
\]
\[
= r(w_1) - l(w_1) + \max(l(w_1), l(x_1)) = l(x)
\]
and
\[
r(w_2b_2) = r(w_1) - l(w_2) + \max(l(w_2), r(a_2)) \quad \text{as} \quad r(b_2) = r(a_2)
\]
\[
= r(w_1) - l(w_1) + \max(l(w_1), r(a_1)) \quad \text{by (3.1)}
\]
\[
= r(w_1) - l(w_1) + \max(l(w_1), l(x_1)) \quad l(x_1) = r(a_1)
\]
\[
= l(x).
\]
The proof of the Lemma is complete. \(\square \)

Returning to the proof of Lemma \(\textbf{3.3} \) by \((C) \) for \(xa_1 \) and \(\bar{x}a_2 \) there exist \(w, \bar{w} \) such that \(wxa_1 = \bar{w}\bar{x}a_2 \) where
\[
w \in H_{r(w), r(xa_1) - l(xa_1) + \max(l(xa_1), l(\bar{x}a_2))} \quad \text{and} \quad \bar{w} \in H_{r(w), r(\bar{x}a_2) - l(\bar{x}a_2) + \max(l(\bar{x}a_1), l(\bar{x}a_2))}.
\]
Using the fact that \(l(b_1) = l(b_2), l(c_1) = l(c_2) \) and \(l(a_1) = l(a_2) \), it is easy to see that \(l(xa_1) = l(\bar{x}a_2) \). Therefore
\[
l(w) = r(xa_1) = r(x) \quad \text{and} \quad l(\bar{w}) = r(\bar{x}a_2) = r(\bar{x}).
\]
Hence \(r(wx) = r(w) = r(\bar{w}) = r(\bar{w}\bar{x}). \)

Now, \(x_1a_1 = x_2a_2, x_1b_1 = x_2b_2 \) and \(wxa_1 = \bar{w}\bar{x}a_2 \), so that by Lemma \(\textbf{3.4} \) we have \(wxb_1 = \bar{w}\bar{xb}_2 \).
We also have $xb_1 = yc_1$ and $xb_2 = yc_2$, and so $wyc_1 = wyc_2$. Thus
\[y_1c_1 = y_2c_2, y_1d_1 = y_2d_2 \text{ and } wyc_1 = wyc_2. \]
Since $r(wy) = r(\bar{w}y)$, by using the above lemma again we have $wyd_1 = \bar{w}yd_2$.
Hence $[xa_1, yd_1] = [\bar{x}a_2, \bar{y}d_2]$. This completes the proof of Lemma 3.3.

The next lemma is useful in verifying that the given multiplication is associative. The proof follows immediately from the fact that $l(ab) \geq l(b)$, $l(de) \geq l(e)$, and (B)(i).

Lemma 3.5. Let $a, b, c, d, e \in S$. If $abc = dec$ and $l(b) \geq r(c), l(e) \geq r(c)$, then $ab = de$.

Lemma 3.6. The given multiplication is associative.

Proof. Let $[a, b], [c, d], [p, q] \in Q$. Then by using the definition of multiplication in Q we have
\[([a, b][c, d])[p, q] = [xa, yd][p, q] \text{ where } xb = yc \]
and $x \in H_{r(x), r(b) - l(b) + \max(l(b), l(c))}, y \in H_{r(x), r(c) - l(c) + \max(l(b), l(c))}$ for some $x, y \in S$ and then
\[([a, b][c, d])[p, q] = [wxa, \bar{w}q] \text{ where } wyd = \bar{w}p \]
and $w \in H_{r(w), r(yd) - l(yd) + \max(l(yd), l(p))}, \bar{w} \in H_{r(w), r(p) - l(p) + \max(l(yd), l(p))}$ for some $w, \bar{w} \in S$. Similarly,
\[[a, b][\{c, d\}[p, q]] = [a, b][\bar{x}c, \bar{y}q] \text{ where } \bar{x}d = \bar{y}p \]
and $\bar{x} \in H_{r(\bar{x}), r(d) - l(d) + \max(l(d), l(p))}, \bar{y} \in H_{r(\bar{x}), r(p) - l(p) + \max(l(d), l(p))}$, and then
\[[a, b][\{c, d\}[p, q]] = [za, z\bar{y}q] \text{ where } zb = z\bar{x}c \]
and $z \in H_{r(z), r(b) - l(b) + \max(l(b), l(xc))}$ and $\bar{z} \in H_{r(z), r(\bar{x}c) - l(\bar{x}c) + \max(l(b), l(xc))}$.
To complete our proof we have to show that $[wxa, \bar{w}q] = [za, z\bar{y}q]$. That is, we need to show that there are $t, h \in S$ such that $twxa = hza$ and $twq = h\bar{y}q$ with
\[r(t) = r(h), l(t) = r(wxa) \text{ and } l(h) = r(za). \]
By Condition (C) for wx, there exist $h, t \in S$ such that $twx = hz$ where
\[t \in H_{r(t), r(wx) - l(wx) + \max(l(wx), l(z))}, h \in H_{r(t), r(z) - l(z) + \max(l(wx), l(z))}, \]
and so $twxa = hza$ and $twxb = hzb$. Since $xb = yc$ and $zb = \bar{z}xc$ we have $twyc = h\bar{z}xc$. But
\[l(y) = r(c) - l(c) + \max(l(b), l(c)) \geq r(c) \]
and
\[l(x) = r(d) - l(d) + \max(l(d), l(p)) = r(c) - l(d) + \max(l(d), l(p)) \geq r(c).\]

By Lemma 3.5 we have \(twy = h\bar{z}\bar{x}\) and so \(twyd = h\bar{z}\bar{x}d\). Now, \(wyd = \bar{w}p\) and \(\bar{xd} = \bar{yp}\), so that \(t\bar{w}p = h\bar{z}\bar{y}p\). But
\[l(\bar{w}) = r(p) - l(p) + \max(l(yd), l(p)) \geq r(p)\]
and
\[l(\bar{y}) = r(p) - l(p) + \max(l(d), l(p)) \geq r(p),\]
so that by Lemma 3.5 \(t\bar{w} = h\bar{z}\bar{y}\). Hence \(t\bar{w}q = h\bar{z}\bar{y}q\). It remains to prove that \(l(t) = r(wx)a\) and \(l(h) = r(za)\).

Since
\[l(t) = r(wx) - l(wx) + \max(l(wx), l(z))\]
and
\[l(h) = r(z) - l(z) + \max(l(wx), l(z)).\]
Calculating, we have
\[r(wx) = r(w) \quad (3.2)\]
\[l(wx) = l(x) - l(yd) + \max(l(p), l(yd)) \quad (3.3)\]
\[l(z) = r(b) - l(b) + \max(l(b), l(\bar{xc})) \quad (3.4)\]
and
\[l(\bar{xc}) = l(c) - l(d) + \max(l(d), l(p)) \quad (3.5)\]
\[l(yd) = l(d) - l(c) + \max(l(b), l(c)) \quad (3.6)\]
Since \(r(wx) = r(wx)a\) and \(r(z) = r(za)\), once we show that \(l(z) = l(wx)\), we will have
\[l(t) = r(wx) = r(wx)a\) and \(l(h) = r(z) = r(za)\).
It is convenient to consider separately two cases.

Case(i): \(l(c) \geq l(b)\). We have \(l(yd) = l(d)\) and \(l(x) = r(b) - l(b) + l(c)\). If \(l(d) \geq l(p)\), then from (3.5) we have \(l(\bar{xc}) = l(c)\). From (3.3) and (3.4),
\[l(wx) = l(x) = r(b) - l(b) + l(c) = l(z).\]
If, on the other hand, \(l(d) \leq l(p)\), then \(l(\bar{xc}) = l(c) - l(d) + l(p)\). From (3.3) and (3.4),
\[l(wx) = l(x) - l(d) + l(p)\]
and
\[l(z) = r(b) - l(b) + \max(l(b), l(c) - l(d) + l(p))\]
Since \(l(c) \geq l(b)\) and \(l(d) \leq l(p)\), then \(l(c) - l(d) + l(p) \geq l(b)\). Thus
If, on the other hand, \(l(c) \leq l(b) \). We have \(l(yd) = l(d) - l(c) + l(b) \) and \(l(x) = r(b) \). If \(l(d) \geq l(p) \), then \(l(\bar{x}c) = l(c) \). From (3.3) and (3.4),
\[
 l(wx) = l(x) - l(d) + l(c) - l(b) + \max(l(p), l(d) - l(c) + l(b))
\]
and
\[
 l(z) = r(b) - l(b) + \max(l(b), l(c)) = r(b) = l(x).
\]
Since \(l(d) \geq l(p) \) and \(l(c) \leq l(b) \) we have \(l(d) - l(c) + l(b) \geq l(d) \geq l(p) \). Then \(l(wx) = l(x) \). Hence \(l(z) = l(x) = l(wx) \).

If, on the other hand, \(l(d) \leq l(p) \), then from (3.5) we have \(l(\bar{x}c) = l(c) - l(d) + l(p) \). From (3.3) and (3.4),
\[
 l(wx) = l(x) - l(d) + l(c) - l(b) + \max(l(p), l(d) - l(c) + l(b))
\]
and
\[
 l(z) = r(b) - l(b) + \max(l(b), l(c) - l(d) + l(p)).
\]
Once again, there are two cases. If \(l(c) - l(d) + l(p) \geq l(b) \), then
\[
 l(p) \geq l(d) - l(c) + l(b)
\]
and so
\[
 l(wx) = l(x) - l(d) + l(c) - l(b) + l(p)
 = r(b) - l(d) + l(c) - l(b) + l(p)
 = l(z).
\]
If, on the other hand, \(l(c) - l(d) + l(p) \leq l(b) \), then \(l(p) \leq l(d) - l(c) + l(b) \). Hence \(l(wx) = l(x) = r(b) = l(z) \).

This completes the proof of the lemma. \(\square \)

Now we aim to show that \(Q \), which we have constructed, is a semigroup of left I-quotients of \(S \). First we show that \(S \) is embedded in \(Q \).

Let \(a \in S \). Then \(a \in H_{r(a), l(a)} \) and as seen earlier, there exist \(x \in S \) with \(l(x) = r(a) \). Then \(xa \in H_{r(x), l(a)} \) and \([x, xa] \in Q\). If \(y \in S \) with \(l(y) = r(a) \), then \(ya \in H_{r(y), l(a)} \) and again \([y, ya] \in Q\). By (C) there exist \(s, t \in S \) with \(sx = ty \) (and so \(sxa = tya \)), where \(s \in H_{r(s), r(x)} \), \(t \in H_{r(s), r(y)} \). Hence \([x, xa] = [y, ya] \). There is therefore a well-defined mapping \(\theta : S \rightarrow Q \) defined by \(a \theta = [x, xa] \) where \(x \in H_{r(x), r(a)} \).

Lemma 3.7. The semigroup \(S \) is embedded in \(Q \).
Proof. Suppose that \(a\theta = b\theta \), that is, \([x, xa] = [y, yb] \) where \(x \in H_{r(x), r(a)} \) and \(y \in H_{r(y), r(b)} \), then there exist \(s, t \in S \) such that \(sx = ty \) and \(sx = tyb \) where \(l(s) = r(x), l(t) = r(y) \) and \(r(s) = r(t) \). We claim that \(a = b \).

Since \(sx = tyb = sx \), once we show that \(r(a), r(b) \geq l(sx) \) we can use (B)(ii) to get \(a = b \). Now, it is easy to see that \(sx \in H_{r(s), r(a)} \) and \(ty \in H_{r(t), r(b)} \) and so \(l(sx) = r(a) \) and \(l(ty) = r(b) \). But \(sx = ty \), so that \(r(a) = r(b) = l(sx) \). Hence \(a = b \) and so \(\theta \) is 1-1, our claim is established.

To show that \(\theta \) is a homomorphism, let \(a\theta = [x, xa] \) and \(b\theta = [y, yb] \) where \(x \in H_{r(x), r(a)} \) and \(y \in H_{r(y), r(b)} \). Then
\[
(a\theta)(b\theta) = [x, xa][y, yb] = [wx, \bar{w}yb] \quad \text{where} \quad wxa = \bar{w}y
\]
and \(w \in H_{r(w), r(xa) - l(xa) + \max(l(xa), l(y))} \). Hence
\[
(a\theta)(b\theta) = [wx, wxab].
\]
Notice that
\[
(b\theta)(a\theta) = [y, yb][x, xa] = [l(a), l(xa)] = [l(a), r(xa) + \max(l(xa), l(y))]
\]
so that \(w \in H_{r(w), r(a) - l(a) + \max(l(a), r(b))} \). Then
\[
wxa = H_{r(w), r(xa) - l(xa) + \max(l(xa), l(y))} = H_{r(w), r(ab)}.
\]
It follows that \((ab)\theta = [wx, wxab] = a\theta b\theta \). \(\square \)

The main purpose of the following is to show that \(Q \) is a bisimple inverse \(\omega \)-semigroup and \(S \) is a left I-order in \(Q \). First we need the following simple but useful lemma.

Lemma 3.8. Let \([a, b] \in Q \). Then \([a, b] = [xa, xb] \) for any \(x \in S \) with \(l(x) = r(a) \).

Proof. It is clear that \(r(xa) = r(x) = r(xb) \), so that \([xa, xb] \in Q \). By (C) for \(a \) and \(xa \) there exist \(t, z \in S \) such that \(ta = zxa \) where
\[
t \in H_{r(t), r(a) - l(a) + \max(l(a), l(xa))}, \quad z \in H_{r(t), r(xa) - l(xa) + \max(l(a), l(xa))}.
\]
Since \(l(xa) = l(a) \) and \(r(xa) = r(x) \), we have \(l(t) = r(a) \) and \(l(z) = r(xa) = r(x) \). Also, \(l(zx) = r(a) \). Hence by (B)(ii), \(t = zx \) and so \(tb = zxb \). Thus
\[
[a, b] = [xa, xb].
\]
\(\square \)

Lemma 3.9. Let \([a, b], [b, c] \in Q \). Then
\[
[a, b][b, c] = [a, c].
\]
Proof. We have
\[[a, b][b, c] = [xa, yc] \]
where \(xb = yb \) and \(x, y \in H_{r(x),r(b) - l(b) + \max(l(b),l(b))} \) so that \(x, y \in H_{r(x),r(b)} \). By (B)(i), \(x = y \). Then by Lemma 3.8 \([xa, xc] = [a, c] \). \(\square \)

Lemma 3.10. The semigroup \(Q \) is regular.

Proof. Let \([a, b] \in Q \). Then \([b, a] \in Q \) and by Lemma 3.9
\[[a, b][b, a][a, b] = [a, b] \]
\(\square \)

Let \([a, a] \in Q \), then by Lemma 3.9 we have \([a, a][a, a] = [a, a] \), that is, \([a, a] \) is an idempotent in \(Q \). Hence \([\{a, a\}, a \in S \} \subseteq E(Q) \).

Lemma 3.11. The set of idempotents of \(Q \) is given by \(E(Q) = \{[a, a]; a \in S \} \).

Proof. Let \([a, b] \in E(Q) \), then \([a, b][a, b] = [a, b] \) and so \([xa, yb] = [a, b] \) where \(xb = ya \) for some \(x \in H_{r(x),r(b) - l(b) + \max(l(b),l(a))} \), \(y \in H_{r(x),r(a) - l(a) + \max(l(b),l(a))} \) so that
\[xa \in H_{r(x),l(a) - l(b) + \max(l(b),l(a))} \] \(yb \in H_{r(x),l(b) - l(a) + \max(l(b),l(a))} \).

Since \([xa, yb] = [a, b] \), then there exist \(t, z \in S \) such that \(txa = za \) and \(tyb = zb \) where \(t \in H_{r(t),r(x)} \) and \(z \in H_{r(t),r(a)} \). It follows that \(l(tx) = l(a) \) and \(l(ty) = l(b) \). Hence
\[tx \in H_{r(t),r(b) - l(b) + \max(l(b),l(a))} \] \(ty \in H_{r(t),r(a) - l(a) + \max(l(b),l(a))} \),
so that
\[l(tx) \geq r(b) = r(a), l(ty) \geq r(a) = l(b) \] \(l(z) = r(a) = r(b) \).

By (B)(i), \(tx = z = ty \). From (B)(ii) as \(r(x) = r(y) = l(t) \), we have \(x = y \), and so \(l(x) = l(y) \), that is, \(r(a) - l(b) + \max(l(b),l(a)) = r(a) - l(a) + \max(l(b),l(a)) \).

Hence \(l(a) = l(b) \) which gives \(l(x) = r(a) = r(b) \). Since \(xb = ya = xa \) by (B)(ii) \(a = b \). \(\square \)

Lemma 3.12. The set \(E(Q) \) is w-chain.

Proof. Let \([a, a], [b, b] \in E(Q) \), then
\[[a, a][b, b] = [xa, yb] \] where \(xa = yb \),
and \(x \in H_{r(x),r(a) - l(a) + \max(l(a),l(b))} \), \(y \in H_{r(x),r(b) - l(b) + \max(l(b),l(b))} \). Hence
\[[a, a][b, b] = [xa, xa] = [yb, yb] \].

If \(l(a) \geq l(b) \), then \(x \in H_{r(x),r(a)} \) and so \(xa \in H_{r(x),l(a)} \). By Lemma 3.8 we have \([xa, xa] = [a, a] \). If \(l(b) \geq l(a) \), then \(y \in H_{r(x),r(b)} \) and \(yb \in H_{r(x),l(b)} \) so that \([yb, yb] = [b, b] \) by Lemma 3.8. \(\square \)
Notice also from Lemma 3.12 that if \(l(a) = l(b) \), then \([a,a][b,b] = [a,a] = [b,b] \).

By Lemma 3.12, the idempotents of \(Q \) form an \(\omega \)-chain and hence commute, by Lemma 3.10, the following Lemma is clear.

Lemma 3.13. The semigroup \(Q \) is inverse.

Lemma 3.14. The semigroup \(Q \) is a bisimple inverse semigroup.

Proof. To show that \(Q \) is a bisimple inverse semigroup, we need to prove that, for any two idempotents \([a,a], [b,b] \) in \(E(Q) \), there is \(q \in Q \) such that \(qq^{-1} = [a,a] \) and \(q^{-1}q = [b,b] \).

By (A), \(S\varphi \) is a left I-order in \(B \). By Lemma 2.2, \(S\varphi \) is straight, so that for \((l(a), l(b))\) there exist \(c, d \) in \(S \) such that

\[
(l(a), l(b)) = c\varphi^{-1}d\varphi \quad \text{where} \quad c\varphi R \ d\varphi \quad \text{in} \quad B,
\]

so that \(c\varphi = (u, l(a)) \) and \(d\varphi = (u, l(b)) \) for some \(u \in \mathbb{N}^0 \). Hence \(q = [c, d] \in Q \).

By Lemma 3.9, \(qq^{-1} = [c, d][d, c] = [c, c] \) and, similarly, \(q^{-1}q = [d, d] \). By the argument following Lemma 3.12, \([c, c] = [a, a] \) and \([d, d] = [b, b] \), as required. \(\square \)

The following lemma throws full light on the relationship between \(S \) and \(Q \).

Lemma 3.15. Every element of \(Q \) can be written as \((a\theta)^{-1}b\theta\), where \(a, b \in S \).

Proof. Suppose that \(q = [a,b] \in Q \). In view of Lemma 3.7, \(a\theta = [x, xa] \) and \(b\theta = [y, yb] \) respectively, for some \(x \in H_{r(x), r(a)} \) and \(y \in H_{r(y), r(b)} \). Hence

\[
(a\theta)^{-1}b\theta = [xa, x][y, yb] = [txa, hyb] \quad \text{where} \quad tx = hy, r(t) = r(h), l(t) = r(x) \text{ and } l(h) = r(y) = [txa, txb] \quad \text{where} \quad l(tx) = r(a) = [a, b] \quad \text{by Lemma 3.8}
\]

\(\square \)

From Lemmas 3.7, 3.12, 3.13, 3.14 and 3.15, we deduce that \(S \) is a straight left I-order in a bisimple inverse \(\omega \)-semigroup. \(\square \)

References

Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

E-mail address: ng521@york.ac.uk
No. 1 'G-COMPLETE REDUCIBILITY AND SEMISIMPLE MODULES' Michael Bate, Sebastian Herpel, Benjamin Martin & Gerhard Röhre

No. 2 'RIGHT-ANGLED COXETER POLYTOPES, HYPERBOLIC 6-MANIFOLDS, AND A PROBLEM OF SIEGEL' Brent Everitt, John Ratcliffe & Steven Tschantz

No. 3 'AFFINE CONSTELLATIONS WITHOUT MUTUALLY UNBIASED COUNTERPARTS' Stefan Weigert & Thomas Durt

No. 4 'THE EVERETT-WHEELER INTERPRETATION AND THE OPEN FUTURE' Anthony Sudbery

No. 5 'CENTRAL LIMIT THEOREM FOR ASSOCIATED CLASS FUNCTIONS ON THE SYMMETRIC GROUP' Dirk Zeindler

No. 6 'SINGULARITY THEOREMS FROM WEAKENED ENERGY CONDITIONS' Chris Fewster & Gregory Galloway

No. 7 'PROPER RESTRICTION SEMIGROUPS AND PARTIAL ACTIONS' Claire Cornock & Victoria Gould

No. 8 'AXIOMATISABILITY PROBLEMS FOR S-POSETS' Victoria Gould & Lubna Shaheen

No. 9 'LEFT ADEQUATE AND LEFT EHRESMANN MONOIDS' Victoria Gould, Mario Branco & Gracinda Gomes

No. 10 'SEMIGROUPS OF INVERSE QUOTIENTS' Nassraddin Ghroda & Victoria Gould

No. 11 'PRIMITIVE INVERSE SEMIGROUPS OF LEFT I-QUOTIENTS' Nassraddin Ghroda

No. 12 'BISIMPLE INVERSE ω-SEMIGROUPS OF LEFT I-QUOTIENTS' Nassraddin Ghroda