TITLE:
‘INJECTIVE SCHUR MODULES’

AUTHOR(S):

Professor Stephen Donkin Dr Haralambos Geranios
Injective Schur Modules

Stephen Donkin and Haralampos Geranios

Department of Mathematics, University of York, York YO10 5DD

stephen.donkin@york.ac.uk, haralampos.geranios@york.ac.uk

13 February 2015

Abstract

We determine for which partitions λ the corresponding induced module (or Schur module in the language of Buchsbaum et. al., [1]) $\nabla(\lambda)$ is injective in the category of polynomial modules for a general linear group over an infinite field. Since the problem is essentially no more difficult in the quantised case we address it at this level of generality.

Introduction

Let K be field and $0 \neq q \in K$. Let $G(n)$ be the corresponding quantum general linear of degree n, as in, for example [7]. Let $T(n)$ denote the algebraic torus and $B(n)$ the Borel subgroup, as in [7]. Each partition λ with at most n parts determines a one dimensional $T(n)$-module K_λ and the module structure extends uniquely to give the structure of a $B(n)$-module. We give a combinatorial description of those λ such that the induced module $\nabla(\lambda) = \text{ind}_{B(n)}^{G(n)} K_\lambda$ is injective as a polynomial module. Section 1 is preliminary and the description is given in Section 2.

1 Preliminaries

1.1 Combinatorics

The standard reference for the polynomial representation theory of $GL_n(K)$ is the monograph [9]. Though we work in the quantised context this reference is appropriate as the combinatorial set-up is essentially the same and we adopt the notation of [9] wherever convenient. Further details may also be found in the monograph, [7], which treats the quantised case.
By a partition we mean an infinite sequence $\lambda = (\lambda_1, \lambda_2, \ldots)$ of nonnegative integers with $\lambda_1 \geq \lambda_2 \geq \ldots$ and $\lambda_j = 0$ for all j sufficiently large. If m is a positive integer such that $\lambda_j = 0$ for $j > m$ we identify λ with the finite sequence $(\lambda_1, \ldots, \lambda_m)$. The length $\text{len}(\lambda)$ of a partition $\lambda = (\lambda_1, \lambda_2, \ldots)$ is 0 if $\lambda = 0$ and is the positive integer m such that $\lambda_m \neq 0$, $\lambda_{m+1} = 0$, if $\lambda \neq 0$.

For a partition λ, we denote by λ' the transpose partition of λ. We define the degree of a partition $\lambda = (\lambda_1, \lambda_2, \ldots)$ by $\deg(\lambda) = \lambda_1 + \lambda_2 + \cdots$.

We set $X(n) = \mathbb{Z}^n$. There is a natural partial order on $X(n)$. For $\lambda = (\lambda_1, \ldots, \lambda_n), \mu = (\mu_1, \ldots, \mu_n) \in X(n)$, we write $\lambda \leq \mu$ if $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$ for $i = 1, 2, \ldots, n - 1$ and $\lambda_1 + \cdots + \lambda_n = \mu_1 + \cdots + \mu_n$. We shall use the standard \mathbb{Z}-basis $\epsilon_1, \ldots, \epsilon_n$ of $X(n)$. Thus $\epsilon_i = (0, \ldots, 1, \ldots, 0)$ (with 1 in the ith position), for $1 \leq i \leq n$. We write ω_i for the element $\epsilon_1 + \cdots + \epsilon_i$ of $X(n)$, for $1 \leq i \leq n$, and set $\omega_0 = 0$. We write $\Lambda(n)$ for the set of n-tuples of nonnegative integers. We write $X^+(n)$ for the set of dominant n-tuples of integers, i.e., the set of elements $\lambda = (\lambda_1, \ldots, \lambda_n) \in X(n)$ such that $\lambda_1 \geq \cdots \geq \lambda_n$.

We write $\Lambda^+(n)$ for the set of partitions into at most n-parts, i.e., $\Lambda^+(n) = X^+(n) \cap \Lambda(n)$. For a nonnegative integer r we write $\Lambda^+(n, r)$ for the set of partitions of r into at most n parts, i.e., the set of elements of $\Lambda^+(n)$ of degree r.

1.2 Rational and Polynomial Modules

Appropriate references for the set-up described here are [3], [6], [7]. Let K be a field. If V, W are vector spaces over K, we write $V \otimes W$ for the tensor product $V \otimes_K W$. We shall be working with the representation theory of quantum groups over K. By the category of quantum groups over K we understand the opposite category of the category of Hopf algebras over K.

Less formally we shall use the expression “G is a quantum group” to indicate that we have in mind a Hopf algebra over K which we denote $K[G]$ and call the coordinate algebra of G. We say that $\phi : G \rightarrow H$ is a morphism of quantum groups over K to indicate that we have in mind a morphism of Hopf algebras over K, from $K[H]$ to $K[G]$, denoted ϕ^\sharp and called the co-morphism of ϕ. We will say H is a quantum subgroup of the quantum group G, over K, to indicate that H is a quantum group with coordinate algebra $K[H] = K[G]/I$, for some Hopf ideal I of $K[G]$, which we call the defining ideal of H. The inclusion morphism $i : H \rightarrow G$ is the morphism of quantum groups whose co-morphism $i^\sharp : K[G] \rightarrow K[H] = K[G]/I$ is the natural map.

Let G be a quantum group over K. The category of left (resp. right) G-modules is the the category of right (resp. left) $K[G]$-comodules. We write $\text{Mod}(G)$ for the category of left G-modules and $\text{mod}(G)$ for the category of finite dimensional left G-modules. We shall also call a G-module a rational G-module (by analogy with the representation theory of algebraic groups). A G-module will mean a left G-module unless indicated otherwise. For a
finite dimensional G-module V the dual space $V^* = \text{Hom}_K(V,K)$ has a natural G-module structure. For a finite dimensional G-module V and a non-negative integer r we write $V^{\otimes r}$ for the r-fold tensor product $V \otimes V \otimes \cdots \otimes V$ and write $V^{\otimes -r}$ for the dual of $V^{\otimes r}$.

Let V be a finite dimensional G-module with structure map $\tau : V \to V \otimes K[G]$. The coefficient space $\text{cf}(V)$ of V is the subspace of $K[G]$ spanned by the “coefficient elements” f_{ij}, $1 \leq i, j \leq m$, defined with respect to a basis v_1, \ldots, v_m of V, by the equations

$$\tau(v_i) = \sum_{j=1}^{m} v_j \otimes f_{ji}$$

for $1 \leq i \leq m$. The coefficient space $\text{cf}(V)$ is independent of the choice of basis and is a subcoalgebra of $K[G]$.

We fix $0 \neq q \in K$. For a positive integer n we shall be working with the corresponding quantum general linear group $G(n)$, as in [7]. We have a K-bialgebra $A(n)$ given by generators c_{ij}, $1 \leq i, j \leq n$, subject to certain relations (depending on q), as in [7], 0.20. The comultiplication map $\delta : A(n) \to A(n) \otimes A(n)$ satisfies $\delta(c_{ij}) = \sum_{r=1}^{n} c_{ir} \otimes c_{rj}$ and the augmentation map $\epsilon : A(n) \to K$ satisfies $\epsilon(c_{ij}) = \delta_{ij}$ (the Kronecker delta), for $1 \leq i, j \leq n$. The elements c_{ij} will be called the coordinate elements and we define the determinant element

$$d_n = \sum_{\pi \in \text{Sym}(n)} \text{sgn}(\pi)c_{1,\pi(1)} \cdots c_{n,\pi(n)}.$$

Here $\text{sgn}(\pi)$ denotes the sign of the permutation π. We form the Ore localisation $A(n)_{d_n}$. The comultiplication map $A(n) \to A(n) \otimes A(n)$ and augmentation map $A(n) \to K$ extend uniquely to K-algebraic maps $A(n)_{d_n} \to A(n)_{d_n} \otimes A(n)_{d_n}$ and $A(n)_{d_n} \to K$, giving $A(n)_{d_n}$ the structure of a Hopf algebra. By the quantum general linear group $G(n)$ we mean the quantum group over K with coordinate algebra $K[G(n)] = A(n)_{d_n}$.

We write $T(n)$ for the quantum subgroup of $G(n)$ with defining ideal generated by all c_{ij} with $1 \leq i, j \leq n$, $i \neq j$. We write $B(n)$ for quantum subgroup of $G(n)$ with defining ideal generated by all c_{ij} with $1 \leq i < j \leq n$. We call $T(n)$ a maximal torus and $B(n)$ a Borel subgroup of $G(n)$ (by analogy with the classical case).

We now recall the weight space decomposition of a finite dimensional $T(n)$-module. For $1 \leq i \leq n$ we define $\tilde{e}_{ii} = c_{ii} + I_{T(n)} \in K[T(n)]$, where $I_{T(n)}$ is the defining ideal of the quantum subgroup $T(n)$ of $G(n)$. Note that $\tilde{e}_{11} \cdots \tilde{e}_{nn} = d_n + I_{T(n)}$, in particular each \tilde{e}_{ii} is invertible in $K[T(n)]$. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in X(n)$ we define $\tilde{e}^\lambda = \tilde{e}_{11}^{\lambda_1} \cdots \tilde{e}_{nn}^{\lambda_n}$. The elements \tilde{e}^λ, $\lambda \in X(n)$, are group-like and form a K-basis of $K[T(n)]$. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in X(n)$, we write K_λ for K regarded as a (one dimensional) $T(n)$-module with structure map $\tau : K_\lambda \to K_\lambda \otimes K[T(n)]$ given by $\tau(v) =$
$v \otimes e^\lambda$, $v \in K_\lambda$. For a finite dimensional rational $T(n)$-module V with structure map $\tau : V \to V \otimes K[T(n)]$ and $\lambda \in X(n)$ we have the weight space

$$V^\lambda = \{ v \in V | \tau(v) = v \otimes e^\lambda \}.$$

Moreover, we have the weight space decomposition $V = \bigoplus_{\lambda \in X(n)} V^\lambda$. We say that $\lambda \in X(n)$ is a weight of V if $V^\lambda \neq 0$.

For each $\lambda \in X^+(n)$ there is an irreducible rational $G(n)$-module $L_n(\lambda)$ which has unique highest weight λ and such λ occurs as a weight with multiplicity one. The modules $L_n(\lambda)$, $\lambda \in X^+(n)$, form a complete set of pairwise non-isomorphic irreducible rational $G(n)$-modules. Note that for $\lambda = (\lambda_1, \ldots, \lambda_n) \in X^+(n)$ the dual module $L_n(\lambda)^*$ is isomorphic to $L_n(\lambda^*)$, where $\lambda^* = (-\lambda_n, \ldots, -\lambda_1)$. For a finite dimensional rational $G(n)$-module V and $\lambda \in X^+(n)$ we write $[V : L_n(\lambda)]$ for the multiplicity of $L_n(\lambda)$ as a composition factor of V.

We write D_n for the one dimensional $G(n)$-module corresponding to the determinant. Thus D_n has structure map $\tau : D_n \to D_n \otimes K[G]$, given by $\tau(v) = v \otimes d_n$, for $v \in D_n$. Thus we have $D_n = L_n(\omega) = L_n(1, 1, \ldots, 1)$. We write E_n for the natural $G(n)$-module. Thus E_n has basis e_1, \ldots, e_n, and the structure map $\tau : E_n \to E_n \otimes K[G(n)]$ is given by $\tau(e_i) = \sum_{j=1}^n e_j \otimes c_{ij}$.

A finite dimensional $G(n)$-module V is called polynomial if $\text{cf}(V) \leq A(n)$. The modules $L_n(\lambda)$, $\lambda \in \Lambda^+(n)$, form a complete set of pairwise non-isomorphic irreducible polynomial $G(n)$-modules. We write $I_n(\lambda)$ for the injective envelope of $L_n(\lambda)$ in the category of polynomial modules. We have a grading $A(n) = \bigoplus_{r=0}^\infty A(n, r)$ in such a way that each c_{ij} has degree 1. Moreover each $A(n, r)$ is a finite dimensional subcoalgebra of $A(n)$. The dual algebra $S(n, r)$ is known as the q-Schur algebra. A finite dimensional $G(n)$-module V is polynomial of degree r if $\text{cf}(V) \leq A(n, r)$. We write $\text{pol}(n)$ (resp. $\text{pol}(n, r)$) for the full subcategory of $\text{mod}(G(n))$ whose objects are the polynomial modules (resp. the modules which are polynomial of degree r).

For an arbitrary finite dimensional polynomial $G(n)$-module we may write V uniquely as a direct sum $V = \bigoplus_{r=0}^\infty V(r)$ in such a way that $V(r)$ is polynomial of degree r, for $r \geq 0$. Let $r \geq 0$. The modules $L_n(\lambda)$, $\lambda \in \Lambda^+(n, r)$, form a complete set of pairwise non-isomorphic irreducible polynomial $G(n)$-modules which are polynomial of degree r. We write $\text{mod}(S)$ for the category of left modules for a finite dimensional K-algebra S. The category $\text{pol}(n, r)$ is naturally equivalent to the category $\text{mod}(S(n, r))$. It follows in particular that, for $\lambda \in \Lambda^+(n, r)$, the module $I_n(\lambda)$ is a finite dimensional module which is polynomial of degree r.

We shall also need modules induced from $B(n)$ to $G(n)$. (For details of the induction functor $\text{Mod}(B(n)) \to \text{Mod}(G(n))$ see, for example, [6].) For $\lambda \in X(n)$ there is a unique (up to isomorphism) one dimensional $B(n)$-module whose restriction to $T(n)$ is K_λ. We also denote this module by K_λ. The induced module $\text{ind}_{B(n)}^{G(n)} K_\lambda$ is non-zero if and only if $\lambda \in X^+(n)$. For
\(\lambda \in X^+(n) \) we set \(\nabla_n(\lambda) = \text{ind}_{B(n)}^G K_\lambda \). Then \(\nabla_n(\lambda) \) is finite dimensional (and its character is the Schur symmetric function corresponding to \(\lambda \)). The \(G(n) \)-module socle of \(\nabla_n(\lambda) \) is \(L_n(\lambda) \). The module \(\nabla_n(\lambda) \) has unique highest weight \(\lambda \) and this weight occurs with multiplicity one.

A filtration \(0 = V_0 \leq V_1 \leq \cdots \leq V_r = V \) of a finite dimensional rational \(G(n) \)-module \(V \) is said to be good if for each \(1 \leq i \leq r \) the quotient \(V_i/V_{i-1} \) is either zero or isomorphic to \(\nabla_n(\lambda^i) \) for some \(\lambda^i \in X^+(n) \). For a rational \(G(n) \)-module \(V \) admitting a good filtration for each \(\lambda \in X^+(n) \), the multiplicity \(|\{1 \leq i \leq r \mid V_i/V_{i-1} \cong \nabla_n(\lambda)\}| \) is independent of the choice of the good filtration, and will be denoted \((V : \nabla_n(\lambda)) \).

For a partition \(\lambda \) we denote by \([\lambda]\) the corresponding partition diagram (as in [9]). For a positive integer \(l \), the \(l \)-core of \([\lambda]\) is the diagram obtained by removing skew \(l \)-hooks, as in [10]. If \(\lambda, \mu \in \Lambda^+(n,r) \) and \([\lambda]\) and \([\mu]\) have different \(l \)-cores then the simple modules \(L_n(\lambda) \) and \(L_n(\mu) \) belong to different blocks and it follows in particular that \(\text{Ext}^i_{S(n,r)}(\nabla(\lambda), \nabla(\mu)) = 0 \), for all \(i \geq 0 \). A precise description of the blocks of the \(q \)-Schur algebras was found by Cox, see [2], Theorem 5.3.

For \(\lambda \in \Lambda^+(n) \) the module \(I_n(\lambda) \) has a good filtration and we have the reciprocity formula \((I_n(\lambda) : \nabla_n(\mu)) = [\nabla_n(\mu) : L_n(\lambda)] \) see e.g., [6], Section 4, (6).

\section{Injective Partitions.}

We are interested in giving a combinatorial description of those \(\lambda \in \Lambda^+(n) \) such that the induced module \(\nabla_n(\lambda) \) is injective in the category of polynomial \(G(n) \)-modules. However, if \(q \) is not a root of unity or if \(q = 1 \) and \(K \) has characteristic 0 then all \(G(n) \)-modules are semisimple, see e.g., [3], (3.3.2) or [6], Section 4, (8). We assume from now on that \(q \) is a root of unity and that if \(q = 1 \) then \(K \) has positive characteristic.

Let \(l \) be the smallest positive integer such that \(1 + q + \cdots + q^{l-1} = 0 \). Thus \(l \) is the order of \(q \) if \(q \neq 1 \) and \(l \) is the characteristic of \(K \) if \(q = 1 \) and \(K \) has positive characteristic.

We write \(X_1(n) \) for the set of \(l \)-restricted partition into at most \(n \) parts, i.e., the set of elements \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \Lambda^+(n) \) such that \(0 \leq \lambda_1 - \lambda_2, \ldots, \lambda_{n-1} - \lambda_n, \lambda_n < l \).

Let \(\lambda \in \Lambda^+(n) \). Recall that the induced module \(\nabla_n(\lambda) \) has simple socle \(L_n(\lambda) \), so that \(\nabla_n(\lambda) \) embeds in \(I_n(\lambda) \). We are interested in the cases in which this embedding is an isomorphism.

\textbf{Definition 2.1.} We call an element \(\lambda \) of \(\Lambda^+(n) \) an injective partition for \(G(n) \), or just an injective partition relative to \(n \), if \(\nabla_n(\lambda) \) is injective in the category of polynomial \(G(n) \)-modules, i.e., if \(\nabla_n(\lambda) = I_n(\lambda) \).
Let $\lambda, \mu \in \Lambda^+(n, r)$. We may also consider λ and μ as elements of $\Lambda^+(N)$ for $N \geq n$ and we have $[\nabla_n(\lambda) : L_n(\mu)] = [\nabla_N(\lambda) : L_N(\mu)]$, by [7], 4.2, (6) (see [9], (6.6e) Theorem for the classical case). We shall write simply $[\lambda : \mu]$ for $[\nabla_n(\lambda) : L_n(\mu)]$.

Remark 2.2. Let $\lambda \in \Lambda^+(n)$ and suppose λ has degree r. For $\mu \in \Lambda^+(n, r)$ we have $(I_n(\lambda) : \nabla_n(\mu)) = [\mu : \lambda]$. In particular we have $(I_n(\lambda) : \nabla_n(\lambda)) = 1$ and if $(I_n(\lambda) : \nabla_n(\mu)) \neq 0$ then $\mu \geq \lambda$. Thus λ is injective for $G(n)$ if and only if $[\mu : \lambda] = 0$ for all $\mu \in \Lambda^+(n, r)$ with $\mu > \lambda$.

Suppose λ is injective for $G(n)$ and $N \geq n$. Let $\mu \in \Lambda^+(N, r)$ and suppose $\mu > \lambda$. Then μ has at most n parts, i.e., $\mu \in \Lambda^+(n, r)$, and therefore $[\mu : \lambda] = 0$. Thus if λ is injective for $G(n)$ then it is injective for $G(N)$ for all $N \geq n$.

From now on we shall simply say that a partition λ is injective if it is injective for some, and hence every, $G(n)$ with $n \geq \text{len}(\lambda)$.

Henceforth, for a partition λ, we write simply $\nabla(\lambda)$ for $\nabla_n(\lambda)$, write $L(\lambda)$ for $L_n(\lambda)$ and so on, with n understood to be sufficiently large, where confusion seems unlikely.

Lemma 2.3. If λ is injective and $n = \text{len}(\lambda)$ then $\lambda - \omega_n$ is injective.

Proof. We work with $G(n)$-modules. Suppose that μ is a partition bigger than $\lambda - \omega_n$ in the dominance order. We have

$$[\nabla_n(\mu) : L_n(\lambda - \omega_n)] = [D_n \otimes \nabla_n(\mu) : D_n \otimes L_n(\lambda - \omega_n)] = [\mu + \omega_n : \lambda]$$

and this is 0 since $\mu + \omega_n > \lambda$. Hence $\lambda - \omega_n$ is injective by Remark 2.2.

Lemma 2.4. A partition λ is injective if and only if λ is a maximal weight of $I(\lambda)$.

Proof. The module $\nabla(\lambda)$ has maximal weight λ so if λ is injective it is a maximal weight of $I(\lambda)$.

Suppose conversely that λ is a maximal weight of $I(\lambda)$. Let $\mu \in \Lambda^+(n, r)$ with $(I(\lambda) : \nabla(\mu)) \neq 0$ and hence, by reciprocity, $[\mu : \lambda] \neq 0$. Then $\mu \geq \lambda$ and by maximality $\mu = \lambda$ and so λ is injective, by Remark 2.2.

Given a partition λ we may write λ uniquely in the form $\lambda = \lambda^0 + l \bar{\lambda}$, where $\lambda^0, \bar{\lambda}$ are partitions and λ^0 is l-restricted.

It will be important for us to make a comparison with the classical case $q = 1$. In this case we will write $\hat{G}(n)$ for $G(n)$ and write x_{ij} for the coordinate element c_{ij}, $1 \leq i, j \leq n$. In this case we write $\hat{L}_n(\lambda)$ for the $\hat{G}(n)$-module $L_n(\lambda)$, $\lambda \in X^+(n)$.

Now we have a morphism of Hopf algebras $\theta : K[\hat{G}(n)] \to K[G(n)]$ given by $\theta(x_{ij}) = c_{ij}'$, for $1 \leq i, j \leq n$. We write $F : G(n) \to G(n)$ for the
morphism of quantum groups such that $F^\sharp = \theta$. Given a $\hat{G}(n)$-module V we write V^F for the corresponding $G(n)$-module. Thus, V^F as a vector space is V and if the $\hat{G}(n)$-module V has structure map $\tau : V \to V \otimes K[\hat{G}(n)]$ then V^F has structure map $(\text{id}_V \otimes F) \circ \tau : V^F \to V^F \otimes K[G(n)]$, where $\text{id}_V : V \to V$ is the identity map on the vector space V.

We have the following relationship between the irreducible modules for $G(n)$ and $\hat{G}(n)$, see [7], Section 3.2, (5).

Theorem 2.5. (Steinberg’s Tensor Product Theorem) For $\lambda^0 \in X_1(n)$ and $\tilde{\lambda} \in X^+(n)$ we have

$$L_n(\lambda^0 + l\tilde{\lambda}) \cong L_n(\lambda^0) \otimes \hat{L}_n(\tilde{\lambda})^F.$$

Lemma 2.6. If λ is an injective partition for $G(n)$ then λ^0 is injective for $G(n)$ and $\tilde{\lambda}$ is injective for $\hat{G}(n)$.

Proof. We write G_1 for the first infinitesimal subgroup of $G(n)$. The G_1-socle of $\nabla(\lambda)$ is $L(\lambda^0) \otimes \nabla(\tilde{\lambda})^F$, and the G_1-socle of $I(\lambda)$ is $L(\lambda^0) \otimes I(\tilde{\lambda})^F$ by [8], Lemma 3.2 (i) (and the remarks on the quantised situation in [8], Section 5). Since $\nabla(\tilde{\lambda})^F$ embeds in $I(\tilde{\lambda})^F$ we must have $\nabla(\lambda) = I(\lambda)$ and $\tilde{\lambda}$ is injective for $\hat{G}(n)$.

Let μ be a maximal weight of $I(\lambda^0)$. Now by [8], Lemma 3.1, $I(\lambda^0) \otimes I(\tilde{\lambda})^F$ has $G(n)$-socle $L(\lambda)$ and so $I(\lambda^0) \otimes I(\tilde{\lambda})^F$ embeds in $I(\lambda)$. Thus $\mu + l\tilde{\lambda}$ is a weight of $I(\lambda)$ and so $I(\lambda)$ has a maximal weight τ, say, such that $\tau \geq \mu + l\tilde{\lambda}$.

But $I(\lambda) = \nabla(\lambda)$ has unique maximal weight λ so that $\lambda \geq \tau \geq \mu + l\tilde{\lambda} \geq \lambda^0 + l\tilde{\lambda} = \lambda$ and so $\mu = \lambda^0$. Hence λ^0 is a maximal weight of $I(\lambda^0)$ and so, by Lemma 2.4, λ^0 is injective.

Lemma 2.7. Let λ be an injective partition and write $\lambda = \lambda^0 + l\tilde{\lambda}$, for partitions $\lambda^0, \tilde{\lambda}$ with λ^0 being l-restricted. Then λ^0 is an l-core.

Proof. By the previous lemma we may assume $\lambda = \lambda^0$, i.e., that λ is restricted. Thus $I(\lambda)$ is isomorphic to its contravariant dual, see e.g., [7], 4.3,(2),(ii) , 4.3, (4) and (4.3), (ix). Hence $I(\lambda)$ has simple head $L(\lambda)$. But $I(\lambda) = \nabla(\lambda)$ and $[\nabla(\lambda) : L(\lambda)] = 1$ so that in fact $I(\lambda) = \nabla(\lambda) = L(\lambda)$. Thus we get $[\mu : \lambda] = \delta_{\lambda,\mu}$ (the Kronecker delta) and $[\lambda : \tau] = \delta_{\lambda,\tau}$, for all partitions μ, τ with $|\mu| = |\tau| = |\lambda|$. Hence $L(\lambda)$ is the only simple in its block (up to isomorphism), i.e., λ is an l-core.

We introduce some additional notation. We set $\delta_0 = 0$ and $\delta_n = (n,n - 1,\ldots,2,1)$, for $n \geq 1$. We set $\sigma_0 = 0$ and

$$\sigma_n = (n(l-1),(n-1)(l-1),\ldots,2(l-1),(l-1))$$

for $n \geq 1$, so that $\sigma_n = (l-1)\delta_n$, $n \geq 0$.

7
We call the partitions of the form σ_n, for some $n \geq 0$, the Steinberg partitions. The justification for this is that in the classical case, with K an algebraically closed field of characteristic $p > 0$ the restriction of the $GL_{n+1}(K)$-module $L(\sigma_n)$ to the special linear group $SL_{n+1}(K)$ is the usual Steinberg module.

Note that, since

\[(n(l-1)+1, \ldots, 2(l-1)+1, l) = (l, \ldots, l) + ((n-1)(l-1), \ldots, l-1, 0)\]

we have $\sigma_n + \omega_n = \sigma_{n-1} + l\omega_n$ i.e.,

\[\sigma_n = \sigma_{n-1} + (l-1)\omega_n\]

for $n \geq 1$.

Remark 2.8. Suppose $n \geq 1$, $0 \leq a < l$ and let μ be an injective partition of length at most n. We note that $\lambda = \sigma_{n-1} + a\omega_n + l\mu$ is injective. We have that $\nabla(\sigma_{n-1} + a\omega_n) = \nabla(\sigma_{n-1}) \otimes D_n^{a\lambda}$ is injective as a module for the first infinitesimal subgroup G_1 of $G(n)$ by [7], Section 3.2, (12) (and for example [11], II, 10.2 Proposition in the classical case). Hence by [8], Lemma 3.2(ii), and the remarks on the quantised situation in [8], Section 5, we have $I(\sigma_{n-1} + a\omega_n) = \nabla(\sigma_{n-1} + a\omega_n)$ and $I(\lambda) = \nabla(\sigma_{n-1} + a\omega_n) \otimes I(\mu)^F = \nabla(\sigma_{n-1} + a\omega_n) \otimes \nabla(\mu)^F$. However, by [7], Section 3.2, (13) (and [11], II, 3.19 Proposition in the classical case) we have $\nabla(\lambda) = \nabla(\sigma_{n-1} + a\omega_n) \otimes \nabla(\mu)^F$ so that $\lambda = \sigma_{n-1} + a\omega_n + l\mu$ is injective.

Remark 2.9. Suppose $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Lambda^+(n)$ is an l-core and $\lambda_n = l-1$. Then we have $\lambda = \sigma_n$. No doubt this is well known. We see it as follows. We may assume $n \geq 2$. Certainly $\lambda_{n-1} - \lambda_n < l$, for otherwise row $n-1$ of the diagram of λ contains a skew l-hook. If $\lambda_{n-1} < 2l - 2$ then there is a skew l-hook beginning at $(n-1, \lambda_{n-1})$ and ending at $(n, \lambda_{n-1} + 2l - l)$. Thus we have $\lambda_{n-1} = 2l - 2$. Now $\mu = \lambda - (l-1)\omega_n$ is a l-core of length $n-1$ with last non-zero entry $l-1$. Hence we can assume inductively that $\mu = \sigma_{n-1}$ and hence

\[\lambda = \sigma_{n-1} + (l-1)\omega_n = \sigma_n.\]

Lemma 2.10. If the partition λ is injective and $\text{len}(\lambda^0) < \text{len}(\bar{\lambda})$ then $\lambda^0 = \sigma_{n-1}$, where $n = \text{len}(\lambda)$

Proof. We consider $\mu = \lambda - \omega_n$. Note that μ has length n and μ_n is congruent to -1 modulo l. Hence, writing $\mu = \mu^0 + l\bar{\mu}$, we have $\mu_n^0 = l-1$. Moreover, μ is injective, by Lemma 2.3, and so μ^0 is injective by Lemma 2.6. Hence μ^0 is a core, by Lemma 2.7 and $\mu^0 = \sigma_n$, by Remark 2.9. Now we have

\[\lambda = \mu + \omega_n = \sigma_n + \omega_n + l\bar{\mu} = \sigma_{n-1} + l(\bar{\mu} + \omega_n)\]

and so $\lambda^0 = \sigma_{n-1}$.

\[\square\]
Lemma 2.11. Let λ be a partition of length n. If λ is injective then $\text{len}(\bar{\lambda}) \leq \text{len}(\lambda^0) + 1$ and in case equality holds we have $\lambda^0 = \sigma_{n-1}$.

Proof. If $\text{len}(\bar{\lambda}) \geq \text{len}(\lambda^0) + 1$ then $\text{len}(\bar{\lambda}) > \text{len}(\lambda^0)$ so that $n = \text{len}(\bar{\lambda})$ and $\text{len}(\lambda^0) < n$. Hence $\lambda^0 = \sigma_{n-1}$ by Lemma 2.10 and $\text{len}(\bar{\lambda}) = \text{len}(\lambda^0) + 1$.

Lemma 2.12. Suppose that the partition λ satisfies $\text{len}(\lambda^0) = \text{len}(\lambda)$ and λ^0 is an l-core. If $\lambda - \omega_n$ is injective, where n is the length of λ, then so is λ.

Proof. Suppose μ is a partition such that $\mu > \lambda$ and $[\mu : \lambda] \neq 0$. Then μ also has core λ^0 and so μ has length n. Thus we may write $\mu = \tau + \omega_n$, for some partition τ. But then

$$[\mu : \lambda] = [\tau + \omega_n : \lambda] = [\tau : \lambda - \omega_n] = 0.$$

Thus no such partition μ exists and λ is injective.

Definition 2.13. We define the Steinberg index $\text{stind}_l(\lambda)$ relative to l of a partition λ to be 0 if $\lambda_1 - \lambda_2 \neq l - 1$ and otherwise to be $m > 0$ if $\lambda_i - \lambda_{i+1} = l - 1$ for $1 \leq i \leq m$ and $\lambda_{m+1} - \lambda_{m+2} \neq l - 1$. (Thus for example $\text{stind}(\sigma_n) = n$, for $n \geq 0$.)

Proposition 2.14. Let λ be a partition written $\lambda = \lambda^0 + l\bar{\lambda}$ in standard form. Then λ is injective if and only if λ^0 is an l-core, $\bar{\lambda}$ is injective and $\text{len}(\lambda) \leq \text{stind}_l(\lambda^0) + 1$.

Proof. Let $n = \text{len}(\lambda)$.

We first suppose λ is injective. Then $\bar{\lambda}$ is injective, by Lemma 2.6 and λ^0 is an l-core, by Lemma 2.7. We claim that also $\text{len}(\bar{\lambda}) \leq \text{stind}_l(\lambda^0) + 1$.

We know that $\text{len}(\bar{\lambda}) \leq \text{len}(\lambda^0) + 1$, by Lemma 2.11. Moreover, if $\text{len}(\bar{\lambda}) = \text{len}(\lambda^0) + 1$ then $\lambda^0 = \sigma_{n-1}$ and so $\text{stind}_l(\lambda^0) = n - 1$, $\text{len}(\bar{\lambda}) = n$, by Lemma 2.11, and the desired conclusion holds. Now suppose that the claim is false and that λ is an injective partition of minimal degree for which it fails. Thus we have $\text{len}(\bar{\lambda}) \leq \text{len}(\lambda^0) = n$ by the case already considered. Thus we must have that $n \geq 2$ and that $\text{stind}_l(\lambda^0) = m$, say, is at most $n - 2$. Now $\mu = \lambda - \omega_n = (\lambda^0 - \omega_n) + p\bar{\lambda}$ is injective, by Lemma 2.3. But we have $\text{stind}_l(\lambda^0 - \omega_n) = \text{stind}_l(\lambda^0)$ and so, by minimality, $\text{len}(\bar{\lambda}) \leq \text{stind}_l(\lambda^0 - \omega_n) = \text{stind}_l(\lambda^0)$ and the claim is proved.

We now suppose that λ is injective, that λ^0 is an l-core and $\text{len}(\bar{\lambda}) \leq \text{stind}_l(\lambda^0) + 1$. We show that λ is injective by induction on the degree of λ.

If the Steinberg index of λ is n then $\lambda^0 = \sigma_n$ and λ is injective by Remark 2.8.

If the Steinberg index of λ is $n - 1$ then λ^0 has the form $\sigma_{n-1} + a\omega_n$, for some $0 \leq a < l$ and this case is also covered by Remark 2.8.
Thus we may assume that \(\text{stind}_l(\lambda) < n - 1 \). Then \(\text{len}(\lambda) < n \) so that \(\text{len}(\lambda^0) = n \). By Lemma 2.12 it is enough to show that \(\lambda - \omega_n \) is injective. But we have

\[
\lambda - \omega_n = (\lambda^0 - \omega_n) + p\bar{\lambda}
\]

and so \(\text{stind}_l(\lambda^0 - \omega_n) = \text{stind}_l(\lambda^0) \) and we are done by induction.

This solves the problem of determining which partitions are injective for \(G(n) \). We separate out the cases.

Corollary 2.15. Suppose \(K \) has characteristic 0. Then a partition \(\lambda \) is injective for \(G(n) \) if and only if \(\lambda^0 \) is an \(l \)-core and \(\text{len}(\bar{\lambda}) \leq \text{stind}_l(\lambda^0) + 1 \).

Proof. In this case all \(\hat{G}(n) \)-modules are completely reducible so that \(\bar{\lambda} \) is injective for \(\hat{G}(n) \) and the result follows from Proposition 2.14.

It remains to consider the case in which \(K \) has characteristic \(p > 0 \). A partition \(\lambda \) has unique base \(p \) expansion \(\lambda = \sum_{i \geq 0} p^i \lambda_i \), where each \(\lambda_i \) is a \(p \)-restricted partition. The final results follow immediately from Proposition 2.14.

Corollary 2.16. Suppose \(K \) has characteristic \(p > 0 \) and \(q = 1 \). Let \(\lambda \) be a partition with base \(p \) expansion \(\lambda = \sum_{i \geq 0} p^i \lambda_i \). Then \(\lambda \) is injective if and only if each \(\lambda_i \) is a \(p \)-core and \(\text{len}(\bar{\lambda}) \leq \text{stind}_p(\lambda_i) + 1 \), for all \(0 \leq i < j \).

Corollary 2.17. Suppose \(K \) has characteristic \(p > 0 \) and \(q \) is an \(l \)th root of unity, with \(l > 1 \). Let \(\lambda \) be a partition written in standard form \(\lambda = \lambda^0 + l\bar{\lambda} \) and write \(\bar{\lambda} \) in its base \(p \) expansion \(\bar{\lambda} = \sum_{i \geq 0} p^i \bar{\lambda}_i \). Then \(\lambda \) is injective if and only if \(\lambda^0 \) is an \(l \)-core and \(\bar{\lambda}_i \) is a \(p \)-core for each \(i \geq 0 \) and we have \(\text{len}(\bar{\lambda}) \leq \text{stind}_p(\bar{\lambda_i}) + 1 \), for all \(0 \leq i < j \).

Examples 2.18. We finish this section with one example of a partition that is injective and one of a partition that is not for the case in which \(K \) is a field of characteristic 3 and \(q \) is a primitive 4th root of unity. We test these partitions using Corollary 2.17.

(i) Consider first the partition \(\lambda = (20, 9, 6) \). We write \(\lambda \) in the standard form \(\lambda = (8, 5, 2) + 4(3, 1, 1) \). We have that \((8, 5, 2) \) is a 4-core and the partition \((3, 1, 1) \) is a 3-core. Moreover \(\text{stind}_4(8, 5, 2) = 2 \) and since \((3, 1, 1) \) has length 3 we get that \(\lambda = (20, 9, 6) \) is an injective partition.

(ii) Consider now the partition \(\mu = (17, 6, 4) \). We write \(\mu \) in the standard form \((5, 2) + 4(3, 1, 1) \). We have that \((5, 2) \) is a 4-core and the partition \((3, 1, 1) \) is a 3-core. Here, \(\text{stind}_4(5, 2) = 1 \) and since \((3, 1, 1) \) has length 3 we get that \(\lambda = (17, 6, 4) \) is not an injective partition.
Acknowledgement

The second author gratefully acknowledges the financial support of EPSRC Grant EP/L005328/1.

References

PREPRINT SERIES 2014/2015

No. 1 'REMOVING THE FADDEEV-POPOV ZERO MODES FROM YANG-MILLS THEORY IN SPACETIMES WITH COMPACT SPATIAL SECTIONS’ Jos Gibbons & Atsushi Higuchi

No. 2 'INVARIANTS OF SPECHT MODULES’ Stephen Donkin & Haralampos Geranios

No. 3 'A FLEXIBLE SEMIPARAMETRIC FORECASTING MODEL FOR TIME SERIES’ Degui Li, Oliver Linton & Zudi Lu

No. 4 'PANEL DATA MODELS WITH INTERACTIVE FIXED EFFECTS AND MULTIPLE STRUCTURAL BREAKS’ Degui Li, Junhui Qian & Liangjun Su

No. 5 'CELLULAR COHOMOLOGY OF POSETS WITH LOCAL COEFFICIENTS’ Brent Everitt & Paul Turner

No. 6 'COCHARACTER-CLOSURE AND THE RATIONAL HILBERT-MUMFORD THEOREM’ Michael Bate, Sebastian Herpel, Benjamin Martin & Gerhard Röhrle

No. 7 'HARMONIC VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS’ Robert Friswell & Chris Wood

No. 8 'PURE QUASIFREE STATES OF THE DIRAC FIELD FROM THE FERMIONIC PROJECTOR’ Chris Fewster & Benjamin Lang

No. 9 'THE SPLIT PROPERTY FOR LOCALLY COVARIANT QUANTUM FIELD THEORIES IN CURVED SPACETIME’ Chris Fewster

No. 10 'INARIANT MEASURE FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS IN UNBOUNDED 2D DOMAINS’ Zdzislaw Brzeźniak, Elżbieta Motyl & Martin Ondreját

No. 11 'MAXIMAL INEQUALITIES FOR STOCHASTIC CONVOLUTIONS DRIVEN BY COMPENSATED POISSON RANDOM MEASURES IN BANACH SPACES’ Zdzislaw Brzeźniak, Erika Hausenblas & Jiahui Zhu

No. 12 'NEGATIVE ENERGY DENSITIES IN INTEGRABLE QUANTUM FIELD THEORIES AT ONE-PARTICLE LEVEL’ Henning Bostelmann & Daniela Cadamuro
No. 13 ‘INJECTIVE SCHUR MODULES’

Stephen Donkin &
Haralampos Geranios